Главная страница  Физика природных явлений 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 [ 35 ] 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

пирующая рельеф, также заряжена положительно. Если, однако, встречается предмет, заряженный отрицательно, молния притянется к нему и скорее всего взорвется. С течением времени заряд в молнии может изменяться, и тогда меняется характер ее движения. Одним словом, шаровая молния очень чутко реагирует на электрическое поле вблизи поверхности земли, на заряд, имеющийся на объектах, которые оказываются на ее пути. Так, молния стремится переместиться в те области пространства, где напряженность поля меньше; этим можно объяснить частое появление шаровых молний внутри помещений.

Вызывает удивление способность шаровой молнии проникать в помещение сквозь щели и отверстия, размеры которых много меньше размеров самой молнии. Так, молния диаметром 40 см может пройти сквозь отверстие диаметром всего в несколько миллиметров. Проходя сквозь малое отверстие, молния очень сильно деформируется, ее вещество как бы переливается через отверстие. Еще более удивительна способность молнии после прохождения сквозь отверстие восстанавливать свою шаровую форму (рис. 7.1). Следует обратить внимание на способность шаровой молнии сохранять форму шара, так как это явно указывает на наличие поверхностного натяжения у вещества молнии.

Скорость движения шаровой молнии невелика: 1...10 м/с. За ней нетрудно следить. Внутри помещений молния может на некоторое время даже останавливаться, зависая над полом.

Живет шаровая молния примерно от 10 с до 1 мин. Меньше живут очень маленькие молнии




(диаметром порядка сантиметра и меньше) и очень большие (диаметром около метра и больше). Наиболее долго живут молнии диаметром 10...40 см. Существуют три разных способа прекращения существования молнии. Чаще всего (в 55% случаев) молния взрывается. В 30% случаев молния спокойно угасает (из-за нехватки запаса энергии, накопленной в ней). В 15% случаев внутри молнии развиваются неустойчивости, и она распадается на чЬсти. Маленькие молнии обычно угасают ( сгорают ); большие предпочитают распадаться на части.

Вообще надо сказать, что в поведении шаровой молнии немало коварства. Мы не знаем, обойдет она тот или иной объект или, напротив, притянется к нему. Неизвестно, взорвется она или спокойно угаснет. Наконец, можно лишь гадать, в какой именно момент произойдет взрыв.

Ну а если взрыв все же происходит, то, спрашивается, насколько он разрушителен? Это определяется, очевидно, запасом энергии молнии.

Сколько энергии содержится в шаровой молнии? Оценить минимальное количество энергии в шаровой молнии можно по тем последствиям, которые она оставляет после своего исчезновения. Воспользуемся сообщением одного из наблюдателей: Она оплавила участок батареи диаметром 6 мм, оставив лунку глубиной 2 мм . Значит, молния испарила около 0,45 г железа. Для этого требуется энергия, равная 4 кДж. Естественно, что не вся (и наверное, далеко не вся) энергия шаровой молнии была израсходована на испарение

небольшого участка батареи, так что полученный результат можно рассматривать всего лишь как оценку нижней границы энергии молнии: эта энергия оказывается не меньше нескольких килоджоулей.

Вот еще одно из наблюдений шаровой молнии: Молния диаметром 30 см взорвалась около водопроводного крана. Этот кран представлял собой трубу диаметром 3 см и высотой 80 см. После взрыва труба оказалась скрученной и была покрыта окалиной, хотя и не накалилась докрасна . Чтобы скрутить железную трубу, надо разогреть некоторый ее участок до достаточно высокой температуры. В то же время, как указывает наблюдатель, труба не накалилась докрасна. Поэтому можно предположить, что молния нагрела участок трубы, скажем, на 600 К. Длину этого участка будем полагать приблизительно равной диаметру трубы.

Решим в связи с этим следующую задачу. Сколько энергии требуется для нагревания на Д7 =бОО К участка железной трубы длиной 1=5 см? Наружный радиус трубы R=l,5 см, внутренний г=1,2 см. Удельная теплоемкость железа с=0,71 Дж/(г-К), плотность железа q=7,8 г/см.

Согласно условию задачи, надо нагреть участок трубы длиной /, т. е. нагреть массу железа:

m=q(nR-nr).

Используя числовые значения величин, получаем т=100 г. Отсюда находим искомую энергию: W=cmfiT=4,2-Дж= =42 кДж.

В одном ИЗ писем сообщалось, что шаровая молния диаметром 30 см расщепила торчащую из воды деревянную причальную сваю диа-



метром 30 см вдоль волокон на длинные щепки. Воспользуемся этим сообщением для оценки энергии молнии.

Рассмотрим задачу. Сколько энергии необходимо для того, чтобы пар, образовавшийся в результате нагрева и испарения воды, разорвал деревянную сваю вдоль волокон? Радиус сваи г=0,15 м; длина участка сваи, в пределах которого образуется пар, /=0,2 м; предел прочности дерева, соответствующий его расш,еплению вдоль волокон, Р(,=3 10 Па,- начальная температура воды Т,=20°С: удельная теплоемкость воды с=4,19 Дж/Сг К), удельная теплота парообразования Х= =2,26 кДж/г. Коэффициент пористости дерева принять равным 0,1.

Под коэффициентом пористости а понимают долю объема древесины, приходящегося на поры. Разрывающий сваю пар занимает объем пор

У = алгН.

В этом объеме при температуре кипения воды 7 =380 К необходимо обеспечить давление водяных паров, равное ро для чего надо нагреть до температуры кипения и испарить некоторое количество молей воды. Обозначим это количество молей через х. Чтобы найти его, воспользуемся уравнением Менделеева - Клапейрона для идеального газа:

poV = xRT,

(7.1)

где R-универсальная газовая постоянная; /?=8,31 Дж/(моль-К). Учитывая, что V=anrl, получаем

x = anrt

(7.2)

Используя числовые значения величин, находим jc=l,35 моль. Молекулярный вес воды равен 18; значит, один моль воды имеет массу 18 г, Искомую энергию W рассчитываем по формуле:

W=\x.x(X-\-cAT), (7.3)

где [i=18 г/моль, ДТ=100-20=80 К. Подставляя в (7.3) числовые значения, находим W=e,3 кДж.

Принимая во внимание результаты рассмотренных задач, можно заключить, что энергия, запасенная в шаровой молнии диаметром 25 см, находится в пределах примерно 100 кДж, Такая оценка представляется вполне правдоподобной; она согласуется с результатами, получаемыми на основе большого количества наблюдений шаровой молнии. Если энергия молнии 100 кДж, а ее диаметр 25 см, то, следовательно, плотность энергии оказывается порядка 10 Дж/см. В общем случае (с учетом молний разных диаметров) можно считать, что энергия шаровой молнии принимает значения от нескольких килоджоулей до нескольких сотен килоджоулей, а плотность энергии лежит в пределах примерно от 1 до 10 Дж/см1

Опасна ли шаровая молния? В

принципе, конечно, она опасна. Вспомним хотя бы смерть Рих-мана, Впрочем, следует принять во внимание, что Рихман экспериментировал во время грозы со специальным устройством, исследуя атмосферное электричество. Возможно, что, сам того не желая, он искусственно создал шаровую молнию, которая и поразила его.

Вообще же встречи с естественной шаровой молнией, как правило, заканчиваются без трагических последствий. Из проведенного журналом Наука и жизнь опроса выяснилось, что из полутора тысяч писем лишь в пяти сообщалось о смертельном исходе. При этом несколько смертей про-



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 [ 35 ] 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

© 2000 - 2024 ULTRASONEX-AMFODENT.RU.
Копирование материалов разрешено исключительно при условии цититирования.