Главная страница  История развития электросвязи 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 [ 17 ] 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

пульсно-кодовой модуляцией (ИКМ). В настоящее время этот способ получения цифровых сигналов из аналоговых наиболее распространен. Системы передачи, использующие данное преобразование сигналов, называются ИКМ-системами. В иностранной литературе используется аббревиатура РСМ (от английских слов pulse code modulation, что в переводе как раз и означает импульсно-кодовая модуляция).

3.4. Восстановление аналоговых сигналов

Все устройства, предназначенные для демодуляции сигналов, будут рассмотрены при изучении конкретных систем передачи и аппаратуры, входящей в состав этих систем.

При приеме сигналов ИКМ для восстановления аналогового сигнала необходимо преобразовать цифровой сигнал (последовательность двоичных импульсов) в квантованный АИМ-сигнал (такое преобразование называется декодированием) и затем осуществить операцию демодуляции, т.е. выделения из АИМ-сигнала аналогового сигнала sit).

Итак, при использовании ИКМ выполняются следующие преобразования аналогового сигнала: в пункте передачи - амплитудно-импульсная модуляция, квантование и кодирование; в пункте приема - декодирование и демодуляция квантованного АИМ-сигнала. Полученный на приеме аналоговый сигнал отличается от переданного, так как образуется из квантованных импульсов, амплитуды которых равны не мгновенным значениям сигнала sit), а ближайшим разрешенным значениям.

Таким образом, операция квантования вносит в процесс передачи сигнала неустранимую ошибку, которая тем меньше, чем больше уровней квантования.

А как узнать, какое десятичное число скрывается под его записью в двоичной системе? Правило простое: под каждым разрядом двоичного числа следует записать его вес . Те веса , которые соответствуют единичным разрядам, нужно сложить. Полученная сумма и явится десятичным числом. Вот перед нами число 1001011, записанное в двоичной нумерации. Поступаем согласно сказанному выше:

10 0 10 11 64 32 16 8 4 2 1 Как видим, заинтересовавшее нас число складывается из единицы, двойки, восьмерки и шестидесяти четырех (1 + 2 + 8 + 64). Очевидно, оно равно 75. Попробуйте самостоятельно определить, какому числу соответствует его двоичная запись 10110011.



3 4 Восстановлание аналоговых сигналов


икм-

сигнал

Рис. 3.7. Декодер ИКМ-сигнала

В состав декодера входит преобразователь последовательного кода в параллельный (рис. 3.7), на выходах которого появляется набор единиц и нулей, соответствующий принятой кодовой комбинации. Каждая единица (токовый импульс) поступает на вход сумматора с весом, где увеличивается в 2 раз. На выходе сумматора возникает импульс, амплитуда которого определяется кодовой комбинацией на входе декодера.

Например, при прохождении кодовой комбинации 0100110 на первый, четвертый, пятый и седьмой входы сумматора напряжение не подается (бестоковые импульсы), а на второй, третий и шестой входы подается напряжение, которое увеличивается соответственно в2\2 и 2 раз. На выходе сумматора появляется напряжение, пропорциональное 2 + 2 + 2 = 38, т.е. квантованный АИМ-сигнал.

На следующем шаге необходимо из отсчетных значений тока получить непрерывный ток. Сделать это нам поможет обычный конденсатор небольшой емкости, который при кратковременном воздействии на него тока (т.е. отсчетного значения) мгновенно зарядится и будет удерживать заряд до следующего кратковременного воздействия.

Отметим еще раз, что восстановленная таким путем кривая непрерывного тока будет несколько отличаться от той, которая была получена на клеммах микрофона: она будет иметь плоские ступеньки между отсчетными значениями. Можно сказать, что процесс взятия отсчетных значений и последующего восстановления непрерывной кривой тока микрофона сопровождается специфическими искажениями, которые могут повлиять на качество воспроизведения звука. Однако на практике для восстановления тока используют не конденсатор, а более сложные схемы, делающие форму восстановленного тока похожей на форму исходного тока и тем самым сводящие на нет действия указанных искажений.



Контрольные вопросы

1. Что такое цифровой сигнал?

2. С какой частотой следует дискретизировать аналоговый сигнал?

3. Как определить ошибку квантования сигнала?

4. В чем заключается принцип двоичного кодирования сигнала?

5. Как восстановить аналоговый сигнал из цифрового?

Список литературы

1. Крук Б.И., Попов Г.Н. ... И мир загадочный за занавесом цифр- Цифровая связь -2-е изд.. испр. - Новосибирск: ЦЭРИС, 2001. - 264 с.

2. Бакалов В.П., Дмитриков В.Ф., Крук Б.И. Основы теории цепей: Учебник для вузов / Под ред. В.П Бакалова. - М Радио и связь, 2000. - 592 с.

3. Журавлева СБ., Крук Б.И. Дискретные сигналы и цепи. 26 вопросов и ответов: Учебное пособие для дистанционного обучения. - Новосибирск: СибГУТИ, 1999. -100 с.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 [ 17 ] 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

© 2000 - 2024 ULTRASONEX-AMFODENT.RU.
Копирование материалов разрешено исключительно при условии цититирования.